- 0
- 63,5 k
Supernovas
Researchers using NASA’s James Webb Space Telescope have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.
Dust is a building block for many things in our universe – planets in particular. As dust from dying stars spreads through space, it carries essential elements to help give birth to the next generation of stars and their planets. Where that dust comes from has puzzled astronomers for decades. One significant source of cosmic dust could be supernovae – after the dying star explodes, its leftover gas expands and cools to create dust.
For supernovae more distant than SN 1987A like SN 2004et and SN 2017eaw, both in NGC 6946 about 22 million light-years away, that combination of wavelength coverage and exquisite sensitivity can only be obtained with Webb’s MIRI (Mid-Infrared Instrument).
While astronomers have confirmed that supernovae produce dust, the question has lingered about how much of that dust can survive the internal shocks reverberating in the aftermath of the explosion. Seeing this amount of dust at this stage in the lifetimes of SN 2004et and SN 2017eaw suggests that dust can survive the shockwave – evidence that supernovae really are important dust factories after all.
Link til bildet: https://skaarpictures.com/iGalerieAstro/?q=item/160-supernovas
stsci-01h3d1s4xw04px7s4qen08ghvy.jpg
Dust is a building block for many things in our universe – planets in particular. As dust from dying stars spreads through space, it carries essential elements to help give birth to the next generation of stars and their planets. Where that dust comes from has puzzled astronomers for decades. One significant source of cosmic dust could be supernovae – after the dying star explodes, its leftover gas expands and cools to create dust.
For supernovae more distant than SN 1987A like SN 2004et and SN 2017eaw, both in NGC 6946 about 22 million light-years away, that combination of wavelength coverage and exquisite sensitivity can only be obtained with Webb’s MIRI (Mid-Infrared Instrument).
While astronomers have confirmed that supernovae produce dust, the question has lingered about how much of that dust can survive the internal shocks reverberating in the aftermath of the explosion. Seeing this amount of dust at this stage in the lifetimes of SN 2004et and SN 2017eaw suggests that dust can survive the shockwave – evidence that supernovae really are important dust factories after all.
Link til bildet: https://skaarpictures.com/iGalerieAstro/?q=item/160-supernovas
stsci-01h3d1s4xw04px7s4qen08ghvy.jpg
Stemmer (0)
Stemmer til nå : 0,0
Din stemme :
Bruker
Publiésert Lørdag 15 juli 2023
av admin
Egenskaper til bildet
Kommentarer (0)
Ingen kommentarer
Legg til en kommentar